
Introduction
Following on from previous work I have benchmarked the models listed in table 1 using a
methodology that is consistent to the original benchmarks allowing for direct comparison of the
results. The models were selected based: on how recently they have been introduced, their use as
benchmarks in recent research, their adoption into popular time series libraries such as GluonTS,
Darts and Nixtla’s NeuralForecast and the diversity of the model architecture.

N-BEATS Global univariate MLP https://arxiv.org/pdf/1
905.10437

N-HITS Global univariate MLP https://arxiv.org/pdf/2
201.12886

TiDE Global univariate MLP https://arxiv.org/pdf/2
304.08424

NLinear Multivariate Linear https://arxiv.org/pdf/2
205.13504

DLinear Multivariate Linear https://arxiv.org/pdf/2
205.13504

Autoformer Multivariate Transformer https://arxiv.org/pdf/2
106.13008

PatchTST Multivariate Transformer https://arxiv.org/pdf/2
211.14730

TimesFM Foundational Transformer https://arxiv.org/pdf/2
310.10688v2

Table 1. The models benchmarked in this study

The objectives were to evaluate recent models which are considered to have state of the art
performance in order to:

1. Compare the performance to older neural network architectures and classical statistical
modelling approaches.

https://forecastingdata.org/
https://arxiv.org/pdf/1905.10437
https://arxiv.org/pdf/1905.10437
https://arxiv.org/pdf/2201.12886
https://arxiv.org/pdf/2201.12886
https://arxiv.org/pdf/2304.08424
https://arxiv.org/pdf/2304.08424
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2106.13008
https://arxiv.org/pdf/2106.13008
https://arxiv.org/pdf/2211.14730
https://arxiv.org/pdf/2211.14730
https://arxiv.org/pdf/2310.10688v2
https://arxiv.org/pdf/2310.10688v2

2. Develop a better understanding of how more recent models perform on a more diverse
range of time series than is typically measured in recent research which tends to focus
more on long horizon multivariate scenarios.

Experiment Setup
I have aimed to faithfully reproduce the experimental setup of previous benchmark experiments
whilst not having to rely on the GluonTS library allowing these benchmarks to be fairly compared to
previous work. Note that TimesFM, being a foundational model, was evaluated on zero short
performance and therefore no model training was required and consequently the experimental
setup described in this section does not apply.

The benchmarking has been completed using my NNTS github repository, which I have developed
for performing experiments with time series models. The models benchmarked were created in this
repo with PyTorch using, where available the, the source code of the official implementation of the
models. This setup allows us to more direct control over the hyperparameters, the training regime
and the data sampling strategy which means that for example we can sample data using a
DeepAR/ GluonTs type approach and an Informer/Multivariate approach in the one code base.

With the exception of Autoformer and PatchTST all models were trained 5 times with different
random seed values and the mean of the metrics for each trained model are reported. In total I
have trained and logged the results of more than 3000 models.

Where possible I have retained the same configuration and hyperparameters as the previously
benchmarked models:

The following values are the same as the previously benchmarked models:

1. Forecast horizon
2. Context length (Lookback window)
3. Global model data sampling strategy.
4. Train / Test data splitting with no validation set and models are selected based on the best

training loss.
5. Batch size
6. Learning rate scheduler ReduceLROnPlateau with matching patience
7. Adam optimiser
8. Performance error metrics (ie mean and median MASE, sMAPE, msMAPE, RMSE, MAE)

Changes to the Experimental Setup
As I have not used GluonTS there are some changes to the setup which I describe as follows:

https://github.com/garethmd/nnts/tree/benchmarking

Loss Function

The models benchmarked previously used differing loss functions, in part this was necessary as
models such as DeepAR and WaveNet produce distributional outputs and consequently use NLL as
loss function, however N-BEATS which is a point forecast model would have used a loss function
based on MASE and sMAPE. As all of the models I have benchmarked produce point forecasts I
believe that using a common loss function for all the models allows for the fairest comparison to be
made. The loss functions defined in the literature for each model vary. The multivariate models and
TiDE use MSE; N-HITS uses MAE. For this study all models were benchmarked using MAE.

Context length

GluonTS’s implementation of DeepAR and Transformer include a lag sequence feature which, act in
addition to the context window of historical values, and specify a set of indices of historical values to
include as additional features. Consequently the receptive field is extended beyond the defined
context window, theoretically giving these models an advantage as they have access to additional
information.

To allow for a fair comparison these benchmarks have been performed using 3 sets of context
lengths the details of which are described in the appendix. Using different context lengths affects
both performance and the computational demands on training since the size of the network is in
part a function of the context length. Unless otherwise stated the reported results will be from
models trained with context lengths matching the previous work.

Data Sampling

The existing benchmarks made on global univariate models (eg DeepAR, Wavenet and N-BEATS)
were completed using GluonTS which uses a data sampling strategy described by Salinas et al.,
2020.. Samples are windows of historic observations and are drawn from the entire time-series
excluding the last forecast horizon which is reserved for backtesting. More uniquely it uses a
weighted sampling scheme to draw windows of observations from a time-series in the dataset such
that the observations are equally likely to be drawn from a time-series regardless of the length of
the time-series. I have implemented a similar system to sample data for the global univariate
models, the key difference between the two systems is that my sampling strategy will select a
random window sample from a time-series, whereas the GluonTS scheme will stochastically sample
from a given time-series where the expected number of samples drawn is 1. Initial experiments with
DeepAR indicate that both approaches are equivalent in performance.

For multivariate models the data sampling scheme is necessarily different due to the input which
requires each sample to consist of a sequence of historical observations for each time-series in the
dataset. Consequently the input of a single example takes the form of L x C dimension matrix where
L is the Context Length and C is the number of time-series in the dataset, commonly referred to in
the literature as the number of channels. The official implementation of the multivariate models
benchmarked all use the same code for sampling and therefore share a common sampling
scheme. I have implemented the same scheme but using logic that integrates better with the nnts

https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888

codebase and have verified that samples are identical between the two mechanisms for a given
random seed.

Data Processing

To be consistent with previous benchmarks the raw data values are used as inputs into each model.
This is unlike the experimental setup used by the authors of the papers where global normalisation
is applied to scale the input data into the model to produce their published results.

I do not add any additional time-dependent or time-independent (static) features. This differs from
GluonTS which by default will add some temporal features (eg day of the month) and a static
feature for the unique identifier for each time-series to certain models such as DeepAR and
Wavenet. As discussed, GluonTS will also add lag features (not to be confused with the sample
window of historical values set by the context length) to DeepAR and the transformer models.

This decision has implications for models such as TiDE and Autoformer that can readily accept
covariates, it is my belief that providing the same data to all models firstly provides the fairest way
to make a comparison and secondly serves as a useful baseline for any future research that may
wish to evaluate the efficacy of incorporating such features.

Hyperparameters
Table 2 details the common set of hyperparameters that were used in the training of all the models
benchmarked.

Epochs 100

Batch Size 32

Loss Function MAE

Optimiser Adam

Weight Decay 0.

Scheduler Reduce LR on Plateau

Scheduler Patience 10

Early Stopper Patience 30

Batches Per Epoch 50

Table 2: Common hyperparameters for all models

All configuration and settings have been logged to WandB.

Models
In total 8 model architectures (3 global univariate, 4 multivariate and 1 foundational model) were
benchmarked. Univariate models generate forecasts specific to one time-series and global means
that a single model is trained on a dataset of multiple time-series and can therefore forecast any
time series from that dataset.

Conversely, multivariate models are trained to forecast a common forecast horizon for all
time-series in a dataset (ie the output of such a model is a H x C matrix where C is the number of
time-series in the dataset (channels) and H is the forecast horizon. The implications of this are that
firstly, these models require a different data sampling strategy from Univariate models as discussed
previously and secondly, Multivariate models are only suitable for use with multivariate datasets
which are datasets containing multiple time-series where all the time-series share a common
time-frame. Datasets containing time-series of varying lengths are not suitable because shorter
time-series will have missing values which would need to be handled by padding or truncating the
dataset to a common time-frame. For these benchmarks I have only benchmarked multivariate
models on the subset of datasets that are multivariate.

Global Univariate Models
Unless otherwise stated all models are trained with a learning rate of 1e-3 and with no dropout.

N-HITS
N-HITS is a fully connected model architecture which is a development of the N-BEATS model
proposed by authors from Nixtla. The model was implemented based on the Nixtla’s NeuralForecast
code. Table 3 lists the model specific hyperparameters used.

n_blocks [1, 1, 1]

mlp_units [[512, 512], [512, 512]]

n_pool_kernel_size [1, 1, 1]

n_freq_downsample [1, 1, 1]

Table 3: N-HITS model specific hyperparameters

TiDE
TiDE is an MLP model with an architecture that utilises residual blocks and skip connections. The
architecture is designed to incorporate time-dependent and time-independent covariates, which
we do not use for these benchmarks in order to keep the input into each model consistent. Future
work to explore the effectiveness of the model to utilise covariates could use these results as a
baseline. Table 4 lists the model specific hyperparameters used.

hidden_size 256

num_encoder_layers 2

num_decoder_layers 2

decoder_output_dim 8

temporal_decoder_dim 128

output_dim 1

dropout 0.3

Table 4: TiDE model specific hyperparameters

N-BEATS
The original benchmarks include the results of the N-BEATS model trained on GluonTS. For this
benchmark I have benchmarked N-BEATS using a model developed based on the source code from
the author’s original implementation. The GluonTS N-BEATS is trained using [MASE, sMAPE, MAPE] as
the loss, whereas this benchmark trained the models using MAE. Table 5 lists the model specific
hyperparameters used.

theta_size 32

num_stacks 30

num_layers 2

layer_size 512

Table 5: N-BEATS model specific hyperparameters

Multivariate Models
The LTSF-Linear and PatchTST are multivariate models but can be configured to run in what's
referred to as a channel independent mode which is used to produce the univariate results detailed
in the literature of these models. I originally assumed that it would be possible to use the channel
independent mode of the multivariate models to run experiments on datasets that are not
multivariate. The problem is that the architecture still expects a single training example to contain
an input window from each series in the dataset, meaning that it can not accommodate datasets

https://github.com/ServiceNow/N-BEATS

with multiple series whose date time ranges are not aligned. To get around this limitation all the
multivariate papers conduct their univariate testing by simply using a single series (the "OT" feature
) from the ETT dataset and report their results accordingly. None of the experiments detailed in the
literature or the associated code appear to have performed any experiments using channel
indepence on the full dataset using multiple time series.

Scaling becomes a problem when using channel independence for datasets containing a lot of
series as the size of the model is, in part, a function of the number of series. DLinear and NLinear
have a particular issue as there are no shared parameters between the series meaning that a
dataset like Kaggle Web Traffic have ~23M parameters divided into 145,063 channels which results in
145,063 individual weight matrices resulting in an extremely computationally expensive
computation. Consequently it was not possible to benchmark all the multivariate models when
using channel independence because of resource constraints.

Autoformer + RevIn
Autoformer is a transformer based model architecture which followed various time-series
transformer architectures such as Informer. The model hyperparameters were chosen based on the
authors selected parameters of the ETTh script in the official source code report. The initial testing
with the model has extremely poor performance which I suspected was likely to be caused by no
scaling of the input. We are not performing global normalisation of the input as was the case with
the experiments detailed in the paper. Consequently, I took the decision to implement the same
Instance Normalisation as PatchTST which improved the performance and these are the figures
reported in my results. Table 6 lists the model specific hyperparameters used.

d_model 512

n_heads 8

e_layers 2

d_layers 1

d_ff 2048

factor 1

Moving_avg (kernel size) 25

Embedding Type Token Embedding + Position Embedding

Activation function gelu

Table 6: Autoformer model specific hyperparameters

https://github.com/thuml/Autoformer

LTSF
LTSF is a family of models and I have benchmarked the two most commonly referenced models:
DLinear and NLinear. They are simple 1-layer linear models developed as baselines for multivariate
models and as such should be treated as multivariate models. Like PatchTST these models have a
“channel independent” configuration which isolates the model parameters to a dedicated channel
(time-series), however being 1-layer models there are no shared parameters at all, effectively
meaning that each channel is a “local” model.

In addition to the multivariate configuration I thought it would be interesting to configure these
models as Univariate so they could be trained against all the datasets. To achieve this the models
were set to have one channel and then trained using our univariate data sampling strategy.
Consequently the weights of the network are shared by all the series in the training set. The authors
did not propose such a configuration and so I do not believe that this is something that they have
considered.

The authors have an official implementation of the paper developed in pytorch, the source code of
which was used as the basis for my implementation.

DLinear

DLinear uses decomposition to split the input sequence into trend and seasonal components using
a moving average that is somewhat reminiscent of classical time-series decomposition. There is
just one hyperparameter, kernel size, which defines the size of the moving average window used
when decomposing the input into seasonal and trend signals. In the literature this is set to 25 which I
have retained for the benchmarks. I would question whether this is optimal and would think that
using the seasonality value would be more suitable, but I leave this for a future study.

Moving avg (kernel size) 25

Table 7: DLinear model specific hyperparameters

NLinear

NLinear is similar to DLinear, but instead of decomposing the input sequence a simple local scaling
function is applied on the temporal dimension.

PatchTST
PatchTST is a transformer based model incorporating a segment based patching system which
reshapes the temporal input sequence to increase the receptive field and an Instance
Normalisation transformation known as Revin. There are some things worth noting concerning the

https://github.com/cure-lab/LTSF-Linear

source code provided by the authors. Firstly, they use One-Cycle scheduling in the training regime
to dynamically vary the learning rate. This is in contrast to LTSF-Linear and Autoformer models which
use a Stepped learning rate scheduler. To be consistent with the other experiments we have used a
reduced learning rate on plateau schedulers.

The model hyperparameters were chosen based on the authors selected parameters of the
univariate ETTh script.

The computational demands to train a PatchTST with channel independence are significantly
greater than the non-transformer based model. For example, traffic hourly took 19 hours to train and
the model has more than 60M parameters.

Foundational Models

TimesFM
TimesFM is a foundational model with a transformer based architecture incorporating patching of
the input with an autoregressive output like many LLM’s. TimesFM has been pretrained on publicly
available time series datasets including, amongst others, the M4, Electricity and Traffic datasets all
of which are used in these benchmarks. This should be taken into account when evaluating the
results as data leakage on at least some of the datasets in the benchmarks would have occurred
during the training of the model.

The benchmarking was performed using zero shot (i.e. no additional fine tuning) with the
timesfm-1.0-200m version using the TimesFM python package which is described in the official
github repo.

Most of the hyperparameters for the model are fixed and are described in Table 8.

Input patch length 32

Output patch length 128

Num layers 20

Model dims 1280

backend cpu

Table 8 hyperparameters for TimesFM

In addition a context length needs to be specified for the TimesFM model. This is related to but not to
be confused with the context length described in this document. For clarity I will refer to this as the
“input context length” and it is a parameter that is a parameter required by the model that must be
a multiple of the input patch length and be longer than the “context length”. The manuscript

https://github.com/yuqinie98/PatchTST
https://github.com/google-research/timesfm/blob/master/README.md

recommends setting this to be as small as possible in order to maximise performance and therefore
I used a value that was the smallest multiple of the input patch length that was larger than the
context length.

Results

Model Performance

Comparing performance of the models in this study

A summary of the MASE performance for the models is detailed in table B of the Appendix. N-HITS
and N-BEATS (which has been previously benchmarked) perform best on 27 of the 41 datasets whilst
TiDE has the lowest MASE on 1 dataset. This may be an indication that TiDE requires additional
covariates to perform optimally.

TimesFM is somewhat difficult to evaluate as the precise details of the training data used is not
publicly available. It is however stated that all M4, Traffic Hourly and Electricity Hourly dataset were
used. For this study we only consider the 18 datasets reported in the TimesFM own benchmarking.
Interestingly TimesFM performs best on 6 of these datasets.

Of the 15 multivariate datasets, one (Kaggle Web Traffic) was not possible to benchmark on any
multivariate model because the resource demands were too great and an additional 3 (Solar 10
mins, Traffic Hourly and Temp Rain) were benchmarked with a subset of the multivariate models
and the univariate models. A multivariate model performed best in 5 datasets (2 PatchTST, 2 DLinear
and 1 NLinear). Autoformer was the only model not to perform best on any dataset.

Comparing performance to previously benchmarked models

The models in this study improved upon previously benchmarked MASE in 8 datasets with N-HITS
scoring best in 4. Table 9 details the improvements to the existing benchmarked results.

Dataset Previous BestMASE (model) NewbestMASE (model)

Covid 5.326 (ETS) 5.176 (NLinear multivariate)

Dominick 0.531 (Wavenet & Transformer) 0.507 (N-HITS)

Kaggle Weekly 0.622 (TBATS) 0.582 (N-HITS)

M4 Daily 1.141 (FFNN) 1.125 (N-BEATS)

Pedestrians 0.247 (Wavenet) 0.241 (N-HITS)

Traffic Weekly 1.084 (Prophet) 1.040 (TimesFM)

US Births 1.453 (TBATS) 1.438 (N-BEATS)

Weather 0.631 (DeepAR) 0.621 (N-HITS & TimesFM)

Table 9 Comparison of best MASE error for previously benchmarked results with the results from this
study in datasets where there has been an overall improvement.

All configuration and settings have been logged to WandB.
Results are also summarised in Google Sheets.

Comparison of LTSF configurations (independent, multivariate,
global and local)
Whilst testing the independent mode of the LTSF-Linear models it became clear that dedicating
channels to serve specific time-series (ie no sharing of parameters between series in the dataset)
effectively resulted in a collection of local models stored in a single artefact. I thought that in this
case the training regime employed could be detrimental to performance, as data from all
time-series is being sampled, and then the loss measured and optimisation occurs for data from all
time series. To understand if this was the case I ran a series of experiments which trained individual
models for each time series in a dataset in order to compare the results. Since the metrics average
the loss per time series in the benchmarks it is possible to make a direct comparison.

The DLinear MASE of these experiments are shown in Table 9 alongside the other configurations:
Independent, Multivariate, and Global. The best error for each data set is shown in bold and the
second best in underlined. Unsurprisingly the Local and Independent results do appear to be closely
related, however there also seems to be an association between the Multivariate and the Global
results. For example the two best performing configurations for Car parts are Multivariate and Global
both with a MASE of ~0.75 and Local and Independent have similar errors of ~1.3 and ~1.4 respectively.
NLinear has the same pattern of behaviour. Clearly the characteristics of certain datasets tend to
benefit from sharing information between time-series. These results seem to suggest some
evidence that for these Linear models information can be shared using univariate or multivariate
methods to a similar effect. Given the limitations of multivariate models it would be interesting to
see if this observation holds for other multivariate models.

model Local Independent Multivariate Global

Car parts 1.271 1.403 0.752 0.747

Covid deaths 9.354 9.200 5.601 5.974

Electricity hourly 1.881 1.883 1.880 2.012

Electricity weekly 1.049 1.096 0.780 0.827

Fred md 0.512 0.548 0.627 0.735

hospital 0.909 0.931 0.800 0.808

Nn5 daily 0.957 0.960 0.961 0.958

Nn5 weekly 1.060 1.126 0.879 0.862

rideshare 4.603 4.580 4.314 4.114

Solar 10 minutes 1.788 1.793 1.611 1.620

Solar weekly 1.116 1.102 1.157 1.152

Traffic hourly 0.965 0.968 0.923 0.918

Traffic weekly 1.454 1.487 1.096 1.130

Table 10 DLinear MASE of Local, Global Univariate, Channel Independent Multivariate and Multivariate
configurations. Bold denotes lowest loss. Underlined is the second lowest loss.

Comparison of context length
It would seem reasonable to assume that as the context length increases there should be a
corresponding improvement in performance, however our results suggest that this is not always the
case. Table 11 details the MASE for the DLinear, N-HITS and NLinear models on a selection of datasets
with varying context lengths. Interestingly in a number of datasets: Car Parts, NN5 Daily, Rideshare,
Solar Weekly, Traffic Hourly the MASE is actually larger with the longest context lengths. Additionally
the models do not always respond to the change in context length in the same way, for example,
DLinear and NLinear on the Electricity Hourly dataset see a reduction in error as the context length
increases and conversely N-HITS MASE increases with a longer context length. The reasons behind
this I will leave for a future investigation, but one possible explanation in some instances could be
that the increase in context length reduces the number of training samples available. In the extreme
case where the context length and the forecast horizon are as long as the time-series there would
be only one training example available per time-series in the dataset. In these scenarios the models
are likely to be overfitting on the training set.

dataset context length
DLinear
independent N-HlTS NLinear independent

Car parts 15 1.404 0.748 1.397

24 1.500 0.750 1.572

Covid deaths 9 9.200 7.362 6.287

38 11.897 7.648 7.135

60 14.060 6.260 7.927

Electricity hourly 30 1.883 2.073 1.891

210 1.599 2.304 1.647

336 1.606 2.627 1.594

Electricity weekly 16 1.446 1.510 1.412

65 1.101 0.986 0.998

Fredmd 15 0.547 0.660 0.499

24 0.551 0.698 0.493

hospital 15 0.929 0.802 0.856

24 1.045 0.797 0.898

Nn5 daily 9 0.960 0.908 0.957

70 0.897 0.833 0.892

112 1.035 0.869 1.036

Nn5weekly 16 1.043 0.869 1.015

65 1.120 0.864 1.074

rideshare 210 4.579 4.041 4.486

336 4.645 4.065 4.573

Saugeen river flow 9 1.602 1.668 1.443

38 1.776 1.647 1.446

60 1.646 1.633 1.442

Solar 10minutes 50 1.793 2.406 1.781

2016 1.280 1.198 1.179

Solar weekly 6 1.102 1.384 1.312

10 0.970 1.082 1.327

65 1.260 2.478 2.626

sunspot 9 0.118 0.166 0.083

38 0.080 0.048 0.067

60 0.062 0.036 0.059

Traffic hourly 30 0.968 0.850 0.926

210 1.102 0.998 1.084

336 1.138 1.069 1.133

Traffic weekly 16 1.209 1.144 1.182

65 1.487 1.083 1.355

us_births 9 2.166 1.510 2.145

38 1.549 1.565 1.569

60 1.578 1.509 1.569

Table 11 MASE for the DLinear, N-HITS and NLinear models on a selection of datasets with varying
context lengths

Execution times
All model training was conducted using an Apple M3 Pro CPU processor with 18Gb Memory.

Model
Training
Time (s)

Autoformer 50,544.87

DLinear independent 3,538.82

DLinear multivariate 746.87

N-BEATS 7,245.35

N-HITS 1,129.08

NLinear independent 2,336.44

NLinear multivariate 295.09

PatchTST independent 5,200.37

PatchTST multivariate 4,841.04

TiDE 1,265.03

Table 12 - Total mean time to train 15 datasets common to all models.

Appendix

Context Length Modes
The benchmarks have been conducted using 3 schemes for context lengths. The method of
calculating the context length for each mode is as follows:

0: The context lengths used in the original benchmarks.
1: A heuristic where the context length = 2 * forecast horizon
2: A heuristic where the context length = 1.25 * min(forecast horizon, seasonality)

Table A details the specific context length and forecast horizon for each mode. The benchmark
results are from context mode 0 (i.e. the same context lengths as in previous benchmarking work).

dataset context length 0 context_length 1 context length 2
forecast
horizon

australian_electricity_dem
and 420 672 420 336

bitcoin 9 60 38 30

car_parts 15 24 15 12

cif_2016 15 24 15 12

covid_deaths 9 60 38 30

dominick 10 16 65 8

electricity_hourly 30 336 210 168

electricity_weekly 65 16 65 8

fred_md 15 24 15 12

hospital 15 24 15 12

kaggle_web_traffic 10 16 65 8

kdd_cup 210 336 210 168

m1_monthly 15 36 23 18

m1_quarterly 5 16 10 8

m1_yearly 2 12 8 6

m3_monthly 15 36 23 18

m3_quarterly 5 16 10 8

m3_yearly 2 12 8 6

m4_daily 9 28 18 14

m4_hourly 210 96 60 48

m4_monthly 15 36 23 18

m4_quarterly 5 16 10 8

m4_weekly 65 26 65 13

m4_yearly 2 12 8 6

nn5_daily 9 112 70 56

nn5_weekly 65 16 65 8

pedestrian_counts 210 48 30 24

rideshare 210 336 210 168

saugeen_river_flow 9 60 38 30

solar_10_minutes 50 2016 1260 1008

solar_weekly 6 10 65 5

sunspot 9 60 38 30

temperature_rain 9 60 38 30

tourism_monthly 15 48 30 24

tourism_quarterly 5 16 10 8

tourism_yearly 2 8 5 4

traffic_hourly 30 336 210 168

traffic_weekly 65 16 65 8

us_births 9 60 38 30

vehicle_trips 9 60 38 30

weather 9 60 38 30

Table A: Dataset context lengths for each mode with the forecast horizon.

Mean MASE results

Dataset Multivariate Autoformer
DLinear
independent

DLinear
multivariate

N-BEATS
global N-HITS global

NLinear
independent

NLinear
multivariate

PatchTST
independent

PatchTST
multivariate TiDE global

TimesFM(ZS)
foundational

TimesFM(ZS)
Paper's
Benchmark

TimesFM(ZS)
Comments

Aus.
Elecdemand 1.094 1.143 1.217 2.109 Y

Bitcoin 6.408 6.066 5.366 Y

Carparts Y 1.247 1.403 0.752 0.753 0.748 1.398 1.045 1.142 1.075 0.747 0.852

CIF 2016 2.261 1.622 2.352 1.261 Y

COVID Y 7.221 9.200 5.601 7.911 7.362 6.287 5.176 8.918 8.111 9.069 8.794 Y

Dominick 0.511 0.507 0.550 0.528

Electricity Hourly Y 2.400 1.883 1.880 2.005 2.073 1.891 1.882 2.131 2.138 2.127 2.265

Electricity
Weekly Y 0.929 1.096 0.780 0.884 0.986 1.001 0.792 0.996 0.846 0.811 0.924

FRED-MD Y 0.621 0.548 0.627 0.666 0.660 0.499 0.843 0.470 0.573 0.901 0.635 Y

Hospital Y 0.930 0.931 0.800 0.786 0.802 0.857 0.803 0.855 0.809 0.850 0.771 Y

Kaggle Weekly Y 0.613 0.582 0.720 0.602

KDD 1.252 1.194 1.304 1.361

M1 Monthly 1.253 1.257 1.501 1.223

M1 Quarterly 2.543 2.369 2.777 1.882

M1 Yearly 5.525 4.840 6.258 5.257

M3 Monthly 0.916 0.906 1.066 0.983

M3 Other

M3 Quarterly 1.134 1.136 1.522 1.290

M3 Yearly 3.024 2.824 3.272 3.428

M4 Daily 1.125 1.142 1.324 1.328

M4 Hourly 2.756 3.781 3.081 0.812

M4 Monthly 0.970 0.987 1.122 1.063

M4 Quarterly 1.209 1.226 1.469 1.370

M4 Weekly 0.484 0.473 0.560 0.463

3.430 3.344 3.698

NN5 Daily Y 1.087 0.960 0.961 0.901 0.908 0.957 0.957 1.156 1.017 0.962 1.483 Y

NN5 Weekly Y 1.032 1.126 0.879 0.824 0.864 1.098 0.847 1.011 0.961 0.848 0.857 Y

Pedestrians 0.245 0.241 0.245 0.257 Y

Rideshare Y 7.680 4.580 4.314 4.108 4.041 4.485 4.418 3.617 3.753 4.164 2.985

Saugeen 1.546 1.602 1.602 1.587 1.668 1.443 1.443 1.492 1.492 1.536 2.225 Y

Solar 10 Mins Y 1.793 1.611 2.379 2.406 1.781 1.771 1.439 1.437 1.473 1.456

Solar Weekly Y 1.767 1.102 1.157 1.306 1.384 1.312 1.248 1.099 0.970 Y

Sunspot 0.133 0.118 0.118 0.192 0.166 0.083 0.083 0.119 0.119 0.174 0.272

Temp. Rain Y 1.093 0.791 0.795 1.725 0.861 1.201 1.050

Tourism Monthly 1.465 1.476 1.705 2.273 Y

Tourism
Quarterly 1.570 1.535 2.844 2.193 Y

Tourism Yearly 109.908 3.195 5.358 3.259 Y

Traffic Hourly Y 0.963 0.923 0.873 0.850 0.922 0.918 0.964 0.896 0.924 0.799 Y* Data Leakage

Traffic Weekly Y 1.476 1.487 1.096 1.117 1.083 1.357 1.103 1.266 1.168 1.124 1.040 Y

US Births 1.688 2.166 2.166 1.438 1.510 2.145 2.145 2.607 2.607 2.723 4.475 Y

Vehicle Trips 1.747 1.728 2.015 2.164

Weather 0.625 0.621 0.648 0.621 Y

Table B. MASE results for each model and dataset benchmarked in this study. Best results are shown in bold.Datasets not in TimesFM's own benchmarks
are not considered as best results due to the likelihood that these were part of the training data.

