
Introduction 
Following on from previous work I have benchmarked the models listed in table 1  using a 
methodology that is consistent to the original benchmarks allowing for direct comparison of the 
results. The models were selected based: on how recently they have been introduced, their use as 
benchmarks in recent research, their adoption into popular time series libraries such as GluonTS, 
Darts and Nixtla’s NeuralForecast and the diversity of the model architecture.  
 
 

N-BEATS Global univariate MLP https://arxiv.org/pdf/1
905.10437 
 

N-HITS Global univariate MLP https://arxiv.org/pdf/2
201.12886 

TiDE Global univariate MLP https://arxiv.org/pdf/2
304.08424 

NLinear Multivariate Linear https://arxiv.org/pdf/2
205.13504 
 

DLinear Multivariate Linear https://arxiv.org/pdf/2
205.13504 
 

Autoformer Multivariate Transformer https://arxiv.org/pdf/2
106.13008 
 

PatchTST Multivariate Transformer https://arxiv.org/pdf/2
211.14730 
 

iTransformer Multivariate Transformer https://arxiv.org/pdf/2
310.06625 
 

PatchTSMixer Multivariate MLP https://arxiv.org/pdf/2
306.09364 
 

TSMixer Multivariate MLP https://arxiv.org/pdf/2
303.06053 
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TimeMixer Multivariate MLP https://openreview.ne
t/pdf?id=7oLshfEIC2 
 

TimesFM Foundational Transformer https://arxiv.org/pdf/2
310.10688v2 
 

TinyTimeMixers Foundational MLP https://arxiv.org/pdf/2
401.03955 
 

Table 1. The models benchmarked in this study 
 
The objectives were to evaluate recent models which are considered to have state of the art 
performance in order to: 

1.​ Compare the performance to older neural network architectures and classical statistical 
modelling approaches. 

2.​ Develop a better understanding of how more recent models perform on a more diverse 
range of time series than is typically measured in recent research which tends to focus 
more on long horizon multivariate scenarios.  

Experiment Setup 
I have aimed to faithfully reproduce the experimental setup of previous benchmark experiments 
whilst not having to rely on the GluonTS library allowing these benchmarks to be fairly compared to 
previous work. Note that TimesFM, being a foundational model, was evaluated on zero short 
performance and therefore no model training was required and consequently the experimental 
setup described in this section does not apply. 
 
The benchmarking has been completed using my NNTS github repository, which I have developed 
for performing experiments with time series models. The models benchmarked were created in this 
repo with PyTorch using, where available the, the source code of the official implementation of the 
models. This setup allows us to more direct control over the hyperparameters, the training regime 
and the data sampling strategy which means that for example we can sample data using a 
DeepAR/ GluonTs type approach and an Informer/Multivariate approach in the one code base.  
 
With the exception of Autoformer and PatchTST all models were trained 5 times with different 
random seed values and the mean of the metrics for each trained model are reported. In total I 
have trained and logged the results of more than 3000 models.  
 
Where possible I have retained the same configuration and hyperparameters as the previously 
benchmarked models: 
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The following values are the same as the previously benchmarked models: 
 

1.​ Forecast horizon 
2.​ Context length (Lookback window)  
3.​ Global model data sampling strategy. 
4.​ Train / Test data splitting with no validation set and models are selected based on the best 

training loss. 
5.​ Batch size 
6.​ Learning rate scheduler ReduceLROnPlateau with matching patience 
7.​ Adam optimiser 
8.​ Performance error metrics (ie mean and median MASE, sMAPE, msMAPE, RMSE, MAE) 

 

Changes to the Experimental Setup 
As I have not used GluonTS there are some changes to the setup which I describe as follows: 

Loss Function 

The models benchmarked previously used differing loss functions, in part this was necessary as 
models such as DeepAR and WaveNet produce distributional outputs and consequently use NLL as  
loss function, however N-BEATS which is a point forecast model would have used a loss function 
based on MASE and sMAPE. As all of the models I have benchmarked produce point forecasts  I 
believe that using a common loss function for all the models allows for the fairest comparison to be 
made. The loss functions defined in the literature for each model vary. The multivariate models and 
TiDE use MSE; N-HITS uses MAE. For this study all models were benchmarked using MAE. 

Context length 

GluonTS’s implementation of DeepAR and Transformer include a lag sequence feature which, act in 
addition to the context window of historical values, and specify a set of indices of historical values to 
include as additional features. Consequently the receptive field is extended beyond the defined 
context window, theoretically giving these models an advantage as they have access to additional 
information. 
 
To allow for a fair comparison these benchmarks have been performed using 3 sets of context 
lengths the details of which are described in the appendix. Using different context lengths affects 
both performance and the computational demands on training since the size of the network is in 
part a function of the context length. Unless otherwise stated the reported results will be from 
models trained with context lengths matching the previous work.  

Data Sampling 

The existing benchmarks made on global univariate models (eg DeepAR, Wavenet and N-BEATS) 
were completed using GluonTS which uses a data sampling strategy described by Salinas et al., 

https://www.sciencedirect.com/science/article/pii/S0169207019301888


2020.. Samples are windows of historic observations and are drawn from the entire time-series 
excluding the last forecast horizon which is reserved for backtesting. More uniquely it uses a 
weighted sampling scheme to draw windows of observations from a time-series in the dataset such 
that the observations are equally likely to be drawn from a time-series regardless of the length of 
the time-series. I have implemented a similar system to sample data for the global univariate 
models, the key difference between the two systems is that my sampling strategy will select a 
random window sample from a time-series, whereas the GluonTS scheme will stochastically sample 
from a given time-series where the expected number of samples drawn is 1. Initial experiments with 
DeepAR indicate that both approaches are equivalent in performance. 
 
For multivariate models the data sampling scheme is necessarily different due to the input which 
requires each sample to consist of a sequence of historical observations for each time-series in the 
dataset. Consequently the input of a single example takes the form of  L x C dimension matrix where 
L is the Context Length and C is the number of time-series in the dataset, commonly referred to in 
the literature as the number of channels. The official implementation of the  multivariate models 
benchmarked all use the same code for sampling and therefore share a common sampling 
scheme. I have implemented the same scheme but using logic that integrates better with the nnts 
codebase and have verified that samples are identical between the two mechanisms for a given 
random seed.  

Data Processing 

To be consistent with previous benchmarks the raw data values are used as inputs into each model. 
This is unlike the experimental setup used by the authors of the papers where global normalisation 
is applied to scale the input data into the model to produce their published results.  
 
I do not add any additional time-dependent or time-independent ( static) features. This differs from 
GluonTS which by default will add some temporal features (eg day of the month) and a static 
feature for the unique identifier for each time-series to certain models such as DeepAR and 
Wavenet. As discussed, GluonTS will also add lag features (not to be confused with the sample 
window of historical values set by the context length ) to DeepAR and the transformer models. 
 
This decision has implications for models such as TiDE and Autoformer that can readily accept 
covariates, it is my belief that providing the same data to all models firstly provides the fairest way 
to make a comparison and secondly serves as a useful baseline for any future research that may 
wish to evaluate the efficacy of incorporating such features.  

Hyperparameters 
Table 2 details the common set of hyperparameters that were used in the training of all the models 
benchmarked. 
 

Epochs 100 

Batch Size 32 

https://www.sciencedirect.com/science/article/pii/S0169207019301888


Loss Function MAE 

Optimiser Adam 

Weight Decay 0. 

Scheduler Reduce LR on Plateau 

Scheduler Patience 10 

Early Stopper Patience 30 

Batches Per Epoch 50 

Table 2: Common hyperparameters for all models  
 
All configuration and settings have been logged to WandB.  

Models 
In total 8 model architectures (3 global univariate, 4 multivariate and 1 foundational model) were 
benchmarked. Univariate models generate forecasts specific to one time-series and global means 
that a single model is trained on a dataset of multiple time-series and can therefore forecast any 
time series from that dataset.  
 
Conversely, multivariate models are trained to forecast a common forecast horizon for all 
time-series in a dataset (ie the output of such a model is a H x C matrix where C is the number of 
time-series in the dataset (channels) and H is the forecast horizon. The implications of this are that 
firstly, these models require a different data sampling strategy from Univariate models as discussed 
previously and secondly, Multivariate models are only suitable for use with multivariate datasets 
which are datasets containing multiple time-series where all the time-series share a common 
time-frame. Datasets containing time-series of varying lengths are not suitable because shorter 
time-series will have missing values which would need to be handled by padding or truncating the 
dataset to a common time-frame. For these benchmarks I have only benchmarked multivariate 
models on the subset of datasets that are multivariate. 

Global Univariate Models 
Unless otherwise stated all models are trained with a learning rate of 1e-3 and with no dropout. 

N-HITS 
N-HITS is a fully connected model architecture which is a development of the N-BEATS model 
proposed by authors from Nixtla. The model was implemented based on the Nixtla’s  NeuralForecast 
code. Table 3 lists the model specific hyperparameters used. 
 



n_blocks [1, 1, 1] 

mlp_units  [[512, 512], [512, 512]] 

n_pool_kernel_size  [1, 1, 1] 

n_freq_downsample [1, 1, 1] 

Table 3: N-HITS model specific hyperparameters 
 

TiDE 
TiDE is an MLP model with an architecture that utilises residual blocks and skip connections. The 
architecture is designed to incorporate time-dependent and time-independent covariates, which 
we do not use for these benchmarks in order to keep the input into each model consistent. Future 
work to explore the effectiveness of the model to utilise covariates could use these results as a 
baseline. Table 4 lists the model specific hyperparameters used. 
 
 

hidden_size 256 

num_encoder_layers 2 

num_decoder_layers 2 

decoder_output_dim 8 

temporal_decoder_dim 128 

output_dim 1 

dropout 0.3 

Table 4: TiDE  model specific hyperparameters 
 

N-BEATS 
The original benchmarks include the results of the N-BEATS model trained on GluonTS. For this 
benchmark I have benchmarked N-BEATS using a model developed based on the source code from 
the author’s original implementation. The GluonTS N-BEATS is trained using [MASE, sMAPE, MAPE] as 
the loss, whereas this benchmark trained the models using MAE. Table 5 lists the model specific 
hyperparameters used. 
 
 
 

https://github.com/ServiceNow/N-BEATS


theta_size 32 

num_stacks 30 

num_layers 2 

layer_size 512 

Table 5: N-BEATS model specific hyperparameters 
 

Multivariate Models 
The LTSF-Linear and PatchTST are multivariate models but can be configured to run in what's 
referred to as a channel independent mode which is used to produce the univariate results detailed 
in the literature of these models.  I originally assumed that it would be possible to use the channel 
independent mode of the multivariate models to run experiments on datasets that are not 
multivariate. The problem is that the architecture still expects a single training example to contain 
an input window from each series in the dataset, meaning that it can not accommodate datasets 
with multiple series whose date time ranges are not aligned. To get around this limitation all the 
multivariate papers conduct their univariate testing by simply using a single series ( the "OT" feature 
) from the ETT dataset and report their results accordingly. None of the experiments detailed in the 
literature or the associated code appear to have performed any experiments using channel 
indepence on the full dataset using multiple time series.  
 
Scaling becomes a problem when using channel independence for datasets containing a lot of 
series as the size of the model is, in part, a function of the number of series. DLinear and NLinear 
have a particular issue as there are no shared parameters between the series meaning that a 
dataset like Kaggle Web Traffic have ~23M parameters divided into 145,063 channels which results in 
145,063 individual weight matrices resulting in an extremely computationally expensive 
computation. Consequently it was not possible to benchmark all the multivariate models when 
using channel independence because of resource constraints. 
 
In order to run multivariate models on all the dataset we set the number of channels to be 1 which 
then allows the model to be treated as a univariate model. 

Autoformer + RevIn 
Autoformer is a transformer based model architecture which followed various time-series 
transformer architectures such as Informer. The model hyperparameters were chosen based on the 
authors selected parameters of the ETTh script in the official source code report. The initial testing 
with the model has extremely poor performance which I suspected was likely to be caused by no 
scaling of the input. We are not performing global normalisation of the input as was the case with 
the experiments detailed in the paper. Consequently, I took the decision to implement the same 
Instance Normalisation as PatchTST which improved the performance and these are the figures 
reported in my results. Table 6 lists the model specific hyperparameters used. 

https://github.com/thuml/Autoformer


 

d_model 512 

n_heads 8 

e_layers 2 

d_layers 1 

d_ff 2048 

factor  1 

Moving_avg (kernel size) 25 

Embedding Type Token Embedding + Position Embedding 

Activation function gelu 

Table 6: Autoformer model specific hyperparameters 

 

LTSF 
LTSF is a family of models and I have benchmarked the two most commonly referenced models: 
DLinear and NLinear. They are simple 1-layer linear models developed as baselines for multivariate 
models and as such should be treated as multivariate models. Like PatchTST these models have a 
“channel independent” configuration which isolates the model parameters to a dedicated channel 
(time-series), however being 1-layer models there are no shared parameters at all, effectively 
meaning that each channel is a “local” model.   
 
In addition to the multivariate configuration I thought it would be interesting to configure these 
models as Univariate so they could be trained against all the datasets. To achieve this the models 
were set to have one channel and then trained using our univariate data sampling strategy. 
Consequently the weights of the network are shared by all the series in the training set. The authors 
did not propose such a configuration and so I do not believe that this is something that they have 
considered.  
 
The authors have an official implementation of the paper developed in pytorch, the source code of 
which was used as the basis for my implementation. 

DLinear 

DLinear uses decomposition to split the input sequence into trend and seasonal components using 
a moving average that is somewhat reminiscent of classical time-series decomposition. There is 
just one hyperparameter, kernel size, which defines the size of the moving average window used 
when decomposing the input into seasonal and trend signals. In the literature this is set to 25 which I 

https://github.com/cure-lab/LTSF-Linear


have retained for the benchmarks. I would question whether this is optimal and would think that 
using the seasonality value would be more suitable, but I leave this for a future study. 
 
 

Moving avg (kernel size) 25 

Table 7: DLinear model specific hyperparameters 

NLinear 

NLinear is similar to DLinear, but instead of decomposing the input sequence a simple local scaling 
function is applied on the temporal dimension. 
 

PatchTST 

PatchTST is a transformer based model incorporating a segment based patching system which 
reshapes the temporal input sequence to increase the receptive field and an Instance 
Normalisation transformation known as Revin. There are some things worth noting concerning the 
source code provided by the authors. Firstly, they use One-Cycle scheduling in the training regime 
to dynamically vary the learning rate. This is in contrast to LTSF-Linear and Autoformer models which 
use a Stepped learning rate scheduler. To be consistent with the other experiments we have used a 
reduced learning rate on plateau schedulers.  
 
The model hyperparameters were chosen based on the authors selected parameters of the 
univariate ETTh script.  
 
The computational demands to train a PatchTST with channel independence are significantly 
greater than the non-transformer based model. For example, traffic hourly took 19 hours to train and 
the model has more than 60M parameters. 
 

iTransformer 
iTransformer is a  transformer based model which applies the attention and feed forward network 
on the inverted dimensions. The source code used is the official implementation. 
 
 
 

d_model 512 

embed timeF 

use_norm True 

class_strategy projection 

https://github.com/yuqinie98/PatchTST
https://github.com/thuml/iTransformer


factor 1 

n_heads  8 

output_attention True 

d_ff 512 

Activation function gelu 

e_layers 2 

enc_in 1 

dec_in 1 

Table 7: iTransformer model specific hyperparameters 

PatchTSMixer 
PatchTSMixer was originally named TSMixer and was proposed by researchers from IBM. It 
is an MLP based model. Source code was adapted from the official Hugging Face 
implementation  
 
 

d_model 48 

num_layers 3 

expansion_factor 3 

dropout 0.5 

head_dropout 0.7 

mode common_channel 

scaling std 

Table 8: patchTSMixer model specific hyperparameters 

TSMixer 
TSMixer was a model architecture proposed by researchers from Google. It is an MLP 
based architecture inspired by MLP-Mixer from the Computer Vision field. 
 
 

activation_fn relu 

blocks 4 

https://github.com/huggingface/transformers/blob/v4.50.0/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py#L1294


num_blocks 4 

ff_dim 256 

output_channels None 

norm_type batch 

normalize_before True 

revin True 

affine False 

subtract_last False 

Table 9: TSMixer model specific hyperparameters 
 

TimeMixer 
Is an all MLP model architecture 
 
 

revin True 

affine True 

subtract_last False 

task_name short_term_forecast 

label_len 0 

down_sampling_window 2 

down_sampling_layers 1 

d_model 32 

d_ff 32 

e_layers 4 

factor 3 

enc_in 1 

dec_in 1 

c_out 1 

down_sampling_method avg 

channel_independence 1 



moving_avg 25 

embed timeF 

freq None 

use_future_temporal_feature 0 

decomp_method moving_avg 

use_norm 1 

num_class None 

Table 10: TimeMixer model specific hyperparameters 
 

Foundational Models 

TimesFM 
TimesFM is a foundational model with a transformer based architecture incorporating patching of 
the input with an autoregressive output like many LLM’s. TimesFM has been pretrained on publicly 
available time series datasets including, amongst others, the M4, Electricity and Traffic datasets all 
of which are used in these benchmarks. This should be taken into account when evaluating the 
results as data leakage on at least some of the datasets in the benchmarks would have occurred 
during the training of the model. 
 
The benchmarking was performed using zero shot (i.e. no additional fine tuning) with the 
timesfm-1.0-200m version using the TimesFM python package which is described in the official 
github repo.  
 
Most of the hyperparameters for the model are fixed and are described in Table 8. 
 

Input patch length 32 

Output patch length 128 

Num layers 20 

Model dims 1280 

backend cpu 

Table 11 hyperparameters for TimesFM 
 
In addition a context length needs to be specified for the TimesFM model. This is related to but not to 
be confused with the context length described in this document. For clarity I will refer to this as the 
“input context length” and it is a parameter that is a parameter required by the model that must be 

https://github.com/google-research/timesfm/blob/master/README.md


a multiple of the input patch length and be longer than the “context length”. The manuscript 
recommends setting this to be as small as possible in order to maximise performance and therefore 
I used a value that was the smallest multiple of the input patch length that was larger than the 
context length.  
 

Tiny Time Mixers 
Tiny Time Mixers (TTM) is a foundational model proposed by researchers at IBM and is based on 
using blocks of PatchTSMixer and is therefore not Transformer based. The benchmarking was 
completed using the R2 version of the model from Hugging Face. The experiments were run as Zero 
Shot (ie we did not perform any fine tuning).  A number of the Monash datasets were used in the 
training process and these are denoted in italics in the results to indicate the presence of data 
leakage These models predict a maximum forecast horizon of 96 timesteps and 512 timesteps as a 
context length. As a result some datasets were not suitable for inference. Context windows were 
leading zero padded to ensure the input was of the correct shape. 
 
 

freq_prefix_tuning True 

prefer_l1_loss True 

prefer_longer_context True 

force_return zeropad 

Table 12 hyperparameters for Tiny Time Mixers 
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