
Introduction
Following on from previous work I have benchmarked the models listed in table 1 using a
methodology that is consistent to the original benchmarks allowing for direct comparison of the
results. The models were selected based: on how recently they have been introduced, their use as
benchmarks in recent research, their adoption into popular time series libraries such as GluonTS,
Darts and Nixtla’s NeuralForecast and the diversity of the model architecture.

N-BEATS Global univariate MLP https://arxiv.org/pdf/1
905.10437

N-HITS Global univariate MLP https://arxiv.org/pdf/2
201.12886

TiDE Global univariate MLP https://arxiv.org/pdf/2
304.08424

NLinear Multivariate Linear https://arxiv.org/pdf/2
205.13504

DLinear Multivariate Linear https://arxiv.org/pdf/2
205.13504

Autoformer Multivariate Transformer https://arxiv.org/pdf/2
106.13008

PatchTST Multivariate Transformer https://arxiv.org/pdf/2
211.14730

iTransformer Multivariate Transformer https://arxiv.org/pdf/2
310.06625

PatchTSMixer Multivariate MLP https://arxiv.org/pdf/2
306.09364

TSMixer Multivariate MLP https://arxiv.org/pdf/2
303.06053

https://forecastingdata.org/
https://arxiv.org/pdf/1905.10437
https://arxiv.org/pdf/1905.10437
https://arxiv.org/pdf/2201.12886
https://arxiv.org/pdf/2201.12886
https://arxiv.org/pdf/2304.08424
https://arxiv.org/pdf/2304.08424
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2205.13504
https://arxiv.org/pdf/2106.13008
https://arxiv.org/pdf/2106.13008
https://arxiv.org/pdf/2211.14730
https://arxiv.org/pdf/2211.14730
https://arxiv.org/pdf/2310.06625
https://arxiv.org/pdf/2310.06625
https://arxiv.org/pdf/2306.09364
https://arxiv.org/pdf/2306.09364
https://arxiv.org/pdf/2303.06053
https://arxiv.org/pdf/2303.06053

TimeMixer Multivariate MLP https://openreview.ne
t/pdf?id=7oLshfEIC2

TimesFM Foundational Transformer https://arxiv.org/pdf/2
310.10688v2

TinyTimeMixers Foundational MLP https://arxiv.org/pdf/2
401.03955

Table 1. The models benchmarked in this study

The objectives were to evaluate recent models which are considered to have state of the art
performance in order to:

1.​ Compare the performance to older neural network architectures and classical statistical
modelling approaches.

2.​ Develop a better understanding of how more recent models perform on a more diverse
range of time series than is typically measured in recent research which tends to focus
more on long horizon multivariate scenarios.

Experiment Setup
I have aimed to faithfully reproduce the experimental setup of previous benchmark experiments
whilst not having to rely on the GluonTS library allowing these benchmarks to be fairly compared to
previous work. Note that TimesFM, being a foundational model, was evaluated on zero short
performance and therefore no model training was required and consequently the experimental
setup described in this section does not apply.

The benchmarking has been completed using my NNTS github repository, which I have developed
for performing experiments with time series models. The models benchmarked were created in this
repo with PyTorch using, where available the, the source code of the official implementation of the
models. This setup allows us to more direct control over the hyperparameters, the training regime
and the data sampling strategy which means that for example we can sample data using a
DeepAR/ GluonTs type approach and an Informer/Multivariate approach in the one code base.

With the exception of Autoformer and PatchTST all models were trained 5 times with different
random seed values and the mean of the metrics for each trained model are reported. In total I
have trained and logged the results of more than 3000 models.

Where possible I have retained the same configuration and hyperparameters as the previously
benchmarked models:

https://openreview.net/pdf?id=7oLshfEIC2
https://openreview.net/pdf?id=7oLshfEIC2
https://arxiv.org/pdf/2310.10688v2
https://arxiv.org/pdf/2310.10688v2
https://arxiv.org/pdf/2401.03955
https://arxiv.org/pdf/2401.03955
https://github.com/garethmd/nnts/tree/benchmarking

The following values are the same as the previously benchmarked models:

1.​ Forecast horizon
2.​ Context length (Lookback window)
3.​ Global model data sampling strategy.
4.​ Train / Test data splitting with no validation set and models are selected based on the best

training loss.
5.​ Batch size
6.​ Learning rate scheduler ReduceLROnPlateau with matching patience
7.​ Adam optimiser
8.​ Performance error metrics (ie mean and median MASE, sMAPE, msMAPE, RMSE, MAE)

Changes to the Experimental Setup
As I have not used GluonTS there are some changes to the setup which I describe as follows:

Loss Function

The models benchmarked previously used differing loss functions, in part this was necessary as
models such as DeepAR and WaveNet produce distributional outputs and consequently use NLL as
loss function, however N-BEATS which is a point forecast model would have used a loss function
based on MASE and sMAPE. As all of the models I have benchmarked produce point forecasts I
believe that using a common loss function for all the models allows for the fairest comparison to be
made. The loss functions defined in the literature for each model vary. The multivariate models and
TiDE use MSE; N-HITS uses MAE. For this study all models were benchmarked using MAE.

Context length

GluonTS’s implementation of DeepAR and Transformer include a lag sequence feature which, act in
addition to the context window of historical values, and specify a set of indices of historical values to
include as additional features. Consequently the receptive field is extended beyond the defined
context window, theoretically giving these models an advantage as they have access to additional
information.

To allow for a fair comparison these benchmarks have been performed using 3 sets of context
lengths the details of which are described in the appendix. Using different context lengths affects
both performance and the computational demands on training since the size of the network is in
part a function of the context length. Unless otherwise stated the reported results will be from
models trained with context lengths matching the previous work.

Data Sampling

The existing benchmarks made on global univariate models (eg DeepAR, Wavenet and N-BEATS)
were completed using GluonTS which uses a data sampling strategy described by Salinas et al.,

https://www.sciencedirect.com/science/article/pii/S0169207019301888

2020.. Samples are windows of historic observations and are drawn from the entire time-series
excluding the last forecast horizon which is reserved for backtesting. More uniquely it uses a
weighted sampling scheme to draw windows of observations from a time-series in the dataset such
that the observations are equally likely to be drawn from a time-series regardless of the length of
the time-series. I have implemented a similar system to sample data for the global univariate
models, the key difference between the two systems is that my sampling strategy will select a
random window sample from a time-series, whereas the GluonTS scheme will stochastically sample
from a given time-series where the expected number of samples drawn is 1. Initial experiments with
DeepAR indicate that both approaches are equivalent in performance.

For multivariate models the data sampling scheme is necessarily different due to the input which
requires each sample to consist of a sequence of historical observations for each time-series in the
dataset. Consequently the input of a single example takes the form of L x C dimension matrix where
L is the Context Length and C is the number of time-series in the dataset, commonly referred to in
the literature as the number of channels. The official implementation of the multivariate models
benchmarked all use the same code for sampling and therefore share a common sampling
scheme. I have implemented the same scheme but using logic that integrates better with the nnts
codebase and have verified that samples are identical between the two mechanisms for a given
random seed.

Data Processing

To be consistent with previous benchmarks the raw data values are used as inputs into each model.
This is unlike the experimental setup used by the authors of the papers where global normalisation
is applied to scale the input data into the model to produce their published results.

I do not add any additional time-dependent or time-independent (static) features. This differs from
GluonTS which by default will add some temporal features (eg day of the month) and a static
feature for the unique identifier for each time-series to certain models such as DeepAR and
Wavenet. As discussed, GluonTS will also add lag features (not to be confused with the sample
window of historical values set by the context length) to DeepAR and the transformer models.

This decision has implications for models such as TiDE and Autoformer that can readily accept
covariates, it is my belief that providing the same data to all models firstly provides the fairest way
to make a comparison and secondly serves as a useful baseline for any future research that may
wish to evaluate the efficacy of incorporating such features.

Hyperparameters
Table 2 details the common set of hyperparameters that were used in the training of all the models
benchmarked.

Epochs 100

Batch Size 32

https://www.sciencedirect.com/science/article/pii/S0169207019301888

Loss Function MAE

Optimiser Adam

Weight Decay 0.

Scheduler Reduce LR on Plateau

Scheduler Patience 10

Early Stopper Patience 30

Batches Per Epoch 50

Table 2: Common hyperparameters for all models

All configuration and settings have been logged to WandB.

Models
In total 8 model architectures (3 global univariate, 4 multivariate and 1 foundational model) were
benchmarked. Univariate models generate forecasts specific to one time-series and global means
that a single model is trained on a dataset of multiple time-series and can therefore forecast any
time series from that dataset.

Conversely, multivariate models are trained to forecast a common forecast horizon for all
time-series in a dataset (ie the output of such a model is a H x C matrix where C is the number of
time-series in the dataset (channels) and H is the forecast horizon. The implications of this are that
firstly, these models require a different data sampling strategy from Univariate models as discussed
previously and secondly, Multivariate models are only suitable for use with multivariate datasets
which are datasets containing multiple time-series where all the time-series share a common
time-frame. Datasets containing time-series of varying lengths are not suitable because shorter
time-series will have missing values which would need to be handled by padding or truncating the
dataset to a common time-frame. For these benchmarks I have only benchmarked multivariate
models on the subset of datasets that are multivariate.

Global Univariate Models
Unless otherwise stated all models are trained with a learning rate of 1e-3 and with no dropout.

N-HITS
N-HITS is a fully connected model architecture which is a development of the N-BEATS model
proposed by authors from Nixtla. The model was implemented based on the Nixtla’s NeuralForecast
code. Table 3 lists the model specific hyperparameters used.

n_blocks [1, 1, 1]

mlp_units [[512, 512], [512, 512]]

n_pool_kernel_size [1, 1, 1]

n_freq_downsample [1, 1, 1]

Table 3: N-HITS model specific hyperparameters

TiDE
TiDE is an MLP model with an architecture that utilises residual blocks and skip connections. The
architecture is designed to incorporate time-dependent and time-independent covariates, which
we do not use for these benchmarks in order to keep the input into each model consistent. Future
work to explore the effectiveness of the model to utilise covariates could use these results as a
baseline. Table 4 lists the model specific hyperparameters used.

hidden_size 256

num_encoder_layers 2

num_decoder_layers 2

decoder_output_dim 8

temporal_decoder_dim 128

output_dim 1

dropout 0.3

Table 4: TiDE model specific hyperparameters

N-BEATS
The original benchmarks include the results of the N-BEATS model trained on GluonTS. For this
benchmark I have benchmarked N-BEATS using a model developed based on the source code from
the author’s original implementation. The GluonTS N-BEATS is trained using [MASE, sMAPE, MAPE] as
the loss, whereas this benchmark trained the models using MAE. Table 5 lists the model specific
hyperparameters used.

https://github.com/ServiceNow/N-BEATS

theta_size 32

num_stacks 30

num_layers 2

layer_size 512

Table 5: N-BEATS model specific hyperparameters

Multivariate Models
The LTSF-Linear and PatchTST are multivariate models but can be configured to run in what's
referred to as a channel independent mode which is used to produce the univariate results detailed
in the literature of these models. I originally assumed that it would be possible to use the channel
independent mode of the multivariate models to run experiments on datasets that are not
multivariate. The problem is that the architecture still expects a single training example to contain
an input window from each series in the dataset, meaning that it can not accommodate datasets
with multiple series whose date time ranges are not aligned. To get around this limitation all the
multivariate papers conduct their univariate testing by simply using a single series (the "OT" feature
) from the ETT dataset and report their results accordingly. None of the experiments detailed in the
literature or the associated code appear to have performed any experiments using channel
indepence on the full dataset using multiple time series.

Scaling becomes a problem when using channel independence for datasets containing a lot of
series as the size of the model is, in part, a function of the number of series. DLinear and NLinear
have a particular issue as there are no shared parameters between the series meaning that a
dataset like Kaggle Web Traffic have ~23M parameters divided into 145,063 channels which results in
145,063 individual weight matrices resulting in an extremely computationally expensive
computation. Consequently it was not possible to benchmark all the multivariate models when
using channel independence because of resource constraints.

In order to run multivariate models on all the dataset we set the number of channels to be 1 which
then allows the model to be treated as a univariate model.

Autoformer + RevIn
Autoformer is a transformer based model architecture which followed various time-series
transformer architectures such as Informer. The model hyperparameters were chosen based on the
authors selected parameters of the ETTh script in the official source code report. The initial testing
with the model has extremely poor performance which I suspected was likely to be caused by no
scaling of the input. We are not performing global normalisation of the input as was the case with
the experiments detailed in the paper. Consequently, I took the decision to implement the same
Instance Normalisation as PatchTST which improved the performance and these are the figures
reported in my results. Table 6 lists the model specific hyperparameters used.

https://github.com/thuml/Autoformer

d_model 512

n_heads 8

e_layers 2

d_layers 1

d_ff 2048

factor 1

Moving_avg (kernel size) 25

Embedding Type Token Embedding + Position Embedding

Activation function gelu

Table 6: Autoformer model specific hyperparameters

LTSF
LTSF is a family of models and I have benchmarked the two most commonly referenced models:
DLinear and NLinear. They are simple 1-layer linear models developed as baselines for multivariate
models and as such should be treated as multivariate models. Like PatchTST these models have a
“channel independent” configuration which isolates the model parameters to a dedicated channel
(time-series), however being 1-layer models there are no shared parameters at all, effectively
meaning that each channel is a “local” model.

In addition to the multivariate configuration I thought it would be interesting to configure these
models as Univariate so they could be trained against all the datasets. To achieve this the models
were set to have one channel and then trained using our univariate data sampling strategy.
Consequently the weights of the network are shared by all the series in the training set. The authors
did not propose such a configuration and so I do not believe that this is something that they have
considered.

The authors have an official implementation of the paper developed in pytorch, the source code of
which was used as the basis for my implementation.

DLinear

DLinear uses decomposition to split the input sequence into trend and seasonal components using
a moving average that is somewhat reminiscent of classical time-series decomposition. There is
just one hyperparameter, kernel size, which defines the size of the moving average window used
when decomposing the input into seasonal and trend signals. In the literature this is set to 25 which I

https://github.com/cure-lab/LTSF-Linear

have retained for the benchmarks. I would question whether this is optimal and would think that
using the seasonality value would be more suitable, but I leave this for a future study.

Moving avg (kernel size) 25

Table 7: DLinear model specific hyperparameters

NLinear

NLinear is similar to DLinear, but instead of decomposing the input sequence a simple local scaling
function is applied on the temporal dimension.

PatchTST

PatchTST is a transformer based model incorporating a segment based patching system which
reshapes the temporal input sequence to increase the receptive field and an Instance
Normalisation transformation known as Revin. There are some things worth noting concerning the
source code provided by the authors. Firstly, they use One-Cycle scheduling in the training regime
to dynamically vary the learning rate. This is in contrast to LTSF-Linear and Autoformer models which
use a Stepped learning rate scheduler. To be consistent with the other experiments we have used a
reduced learning rate on plateau schedulers.

The model hyperparameters were chosen based on the authors selected parameters of the
univariate ETTh script.

The computational demands to train a PatchTST with channel independence are significantly
greater than the non-transformer based model. For example, traffic hourly took 19 hours to train and
the model has more than 60M parameters.

iTransformer
iTransformer is a transformer based model which applies the attention and feed forward network
on the inverted dimensions. The source code used is the official implementation.

d_model 512

embed timeF

use_norm True

class_strategy projection

https://github.com/yuqinie98/PatchTST
https://github.com/thuml/iTransformer

factor 1

n_heads 8

output_attention True

d_ff 512

Activation function gelu

e_layers 2

enc_in 1

dec_in 1

Table 7: iTransformer model specific hyperparameters

PatchTSMixer
PatchTSMixer was originally named TSMixer and was proposed by researchers from IBM. It
is an MLP based model. Source code was adapted from the official Hugging Face
implementation

d_model 48

num_layers 3

expansion_factor 3

dropout 0.5

head_dropout 0.7

mode common_channel

scaling std

Table 8: patchTSMixer model specific hyperparameters

TSMixer
TSMixer was a model architecture proposed by researchers from Google. It is an MLP
based architecture inspired by MLP-Mixer from the Computer Vision field.

activation_fn relu

blocks 4

https://github.com/huggingface/transformers/blob/v4.50.0/src/transformers/models/patchtsmixer/modeling_patchtsmixer.py#L1294

num_blocks 4

ff_dim 256

output_channels None

norm_type batch

normalize_before True

revin True

affine False

subtract_last False

Table 9: TSMixer model specific hyperparameters

TimeMixer
Is an all MLP model architecture

revin True

affine True

subtract_last False

task_name short_term_forecast

label_len 0

down_sampling_window 2

down_sampling_layers 1

d_model 32

d_ff 32

e_layers 4

factor 3

enc_in 1

dec_in 1

c_out 1

down_sampling_method avg

channel_independence 1

moving_avg 25

embed timeF

freq None

use_future_temporal_feature 0

decomp_method moving_avg

use_norm 1

num_class None

Table 10: TimeMixer model specific hyperparameters

Foundational Models

TimesFM
TimesFM is a foundational model with a transformer based architecture incorporating patching of
the input with an autoregressive output like many LLM’s. TimesFM has been pretrained on publicly
available time series datasets including, amongst others, the M4, Electricity and Traffic datasets all
of which are used in these benchmarks. This should be taken into account when evaluating the
results as data leakage on at least some of the datasets in the benchmarks would have occurred
during the training of the model.

The benchmarking was performed using zero shot (i.e. no additional fine tuning) with the
timesfm-1.0-200m version using the TimesFM python package which is described in the official
github repo.

Most of the hyperparameters for the model are fixed and are described in Table 8.

Input patch length 32

Output patch length 128

Num layers 20

Model dims 1280

backend cpu

Table 11 hyperparameters for TimesFM

In addition a context length needs to be specified for the TimesFM model. This is related to but not to
be confused with the context length described in this document. For clarity I will refer to this as the
“input context length” and it is a parameter that is a parameter required by the model that must be

https://github.com/google-research/timesfm/blob/master/README.md

a multiple of the input patch length and be longer than the “context length”. The manuscript
recommends setting this to be as small as possible in order to maximise performance and therefore
I used a value that was the smallest multiple of the input patch length that was larger than the
context length.

Tiny Time Mixers
Tiny Time Mixers (TTM) is a foundational model proposed by researchers at IBM and is based on
using blocks of PatchTSMixer and is therefore not Transformer based. The benchmarking was
completed using the R2 version of the model from Hugging Face. The experiments were run as Zero
Shot (ie we did not perform any fine tuning). A number of the Monash datasets were used in the
training process and these are denoted in italics in the results to indicate the presence of data
leakage These models predict a maximum forecast horizon of 96 timesteps and 512 timesteps as a
context length. As a result some datasets were not suitable for inference. Context windows were
leading zero padded to ensure the input was of the correct shape.

freq_prefix_tuning True

prefer_l1_loss True

prefer_longer_context True

force_return zeropad

Table 12 hyperparameters for Tiny Time Mixers

	Introduction
	Experiment Setup
	Changes to the Experimental Setup
	Loss Function
	Context length
	Data Sampling
	Data Processing

	Hyperparameters

	Models
	Global Univariate Models
	N-HITS
	TiDE
	N-BEATS

	Multivariate Models
	Autoformer + RevIn
	
	LTSF
	DLinear
	NLinear

	PatchTST
	iTransformer
	PatchTSMixer
	TSMixer
	TimeMixer

	Foundational Models
	TimesFM
	Tiny Time Mixers

