(incomplete) RMSSE results:
Dataset SES TBATS Theta ETS (DHR-) ARIMA PR Cat- Boost FFNN DeepAR N-BEATS WaveNet Trans- former Informer*
australian_electricity_demand 3.277 2.125 3.292 6.13 4.691 - 1.35 1.574 1.831 1.28 1.403 1.404 -
bitcoin 6.18 5.546 6.22 5.818 6.546 - 5.653 7.027 7.24 9.02 5.526 9.228 -
car_parts 1.563 1.688 1.602 1.593 1.611 1.508 1.57 1.524 1.524 3.096 1.523 1.524 -
cif_2016 1.767 1.128 1.316 1.099 1.219 1.371 1.602 - - - - - -
covid_deaths 9.489 6.99 9.567 6.551 7.527 10.542 10.309 6.893 8.577 7.178 9.462 10.839 -
dominick 0.682 0.839 0.719 0.696 - 1.107 0.982 0.719 0.693 1.13 0.701 0.686 -
electricity_hourly 5.587 4.636 5.588 7.514 5.72 3.752 3.229 4.258 3.407 2.828 2.685 3.245 5.549
electricity_weekly 1.679 0.916 1.607 1.669 1.013 1.051 0.94 0.906 1.14 0.921 1.382 1.901 -
fred_md 0.73 0.596 0.951 0.564 0.632 9.644 1.047 0.719 0.756 0.699 0.908 2.027 18.307
hospital 0.992 0.938 0.931 0.936 0.96 0.953 0.973 1.019 0.935 0.963 0.954 1.206 -
kaggle_web_traffic 0.959 0.895 0.951 1.045 - 1.306 2.517 0.974 1.03 0.952 0.901 1.173 -
kdd_cup 2.405 2.159 2.406 2.553 2.863 2.004 1.937 1.966 2.485 2.396 1.935 2.5 -
m1_monthly 1.688 1.338 1.306 1.285 1.389 1.36 1.449 1.444 1.424 1.408 1.454 2.525 -
m1_quarterly 2.227 1.98 1.967 1.913 2.087 2.193 2.363 2.168 2.122 2.086 1.984 3.208 -
m1_yearly 5.708 4.105 4.879 4.416 5.414 5.325 5.19 5.13 5.383 5.101 5.367 6.386 -
m3_monthly 1.302 1.036 1.035 1.036 1.048 1.198 - 1.203 1.373 1.132 1.212 1.693 -
m3_quarterly 1.658 1.464 1.303 1.37 1.448 1.453 1.693 1.561 1.523 1.384 1.489 2.773 -
m3_yearly 3.626 3.646 3.204 3.32 4.017 3.738 4.347 3.946 4.065 3.438 3.49 3.534 -
m4_daily 1.351 1.356 1.35 1.461 1.385 1.358 1.792 1.342 2.514 1.417 1.353 1.592 -
m4_hourly 14.341 3.34 14.236 31.151 14.185 1.949 2.22 3.475 2.688 2.812 2.075 9.379 -
m4_monthly 1.382 1.353 1.163 1.138 1.163 1.296 1.304 1.413 1.39 1.241 1.389 2.345 -
m4_quarterly 1.656 1.385 1.429 1.355 1.43 1.524 1.558 1.645 1.486 1.448 1.443 1.738 -
m4_weekly 0.71 0.602 0.658 0.694 0.659 0.576 0.713 0.647 0.7 0.543 0.701 0.83 -
m4_yearly 4.55 3.92 3.861 3.927 4.443 4.115 4.179 - - - - - -
nn5_daily 1.889 1.202 1.224 1.21 1.391 1.672 1.32 1.337 1.276 1.491 1.322 1.364 1.925
nn5_weekly 1.084 1.076 1.078 1.088 1.07 1.06 1.045 1.037 1.085 0.986 1.405 1.356 -
pedestrian_counts 1.287 1.525 1.288 1.533 5.144 0.353 0.36 0.377 0.392 0.556 0.353 0.396 -
rideshare 4.76 4.827 5.634 4.76 3.359 - 4.622 4.726 4.739 4.349 3.727 4.76 -
saugeen_river_flow 2.64 2.824 2.639 3.343 2.867 3.164 2.608 2.695 3.004 3.244 2.852 3.258 2.8
solar_10_minutes 3.2 4.802 3.201 3.2 2.441 3.2 3.847 3.194 3.198 2.926 - 3.2 -
solar_weekly 1.345 1.057 1.356 1.27 0.975 1.174 1.763 1.224 0.884 1.321 2.485 0.687 -
sunspot 0.128 0.077 0.128 0.128 0.077 0.103 0.062 0.219 0.03 0.376 0.017 0.013 0.332
temperature_rain 1.963 1.815 1.974 2.021 1.779 - 1.63 1.684 1.677 2.221 1.631 1.588 -
tourism_monthly 4.427 2.273 2.158 1.954 2.03 2.165 2.195 2.055 1.824 2.079 1.898 1.986 -
tourism_quarterly 3.769 2.209 2.046 1.905 2.112 2.003 - 2.036 1.915 1.811 2.048 2.17 -
tourism_yearly 3.568 4.05 3.307 3.713 4.173 3.784 3.911 3.717 3.456 3.25 3.974 3.847 -
traffic_hourly 2.489 3.173 2.489 2.904 3.091 1.821 2.132 1.413 1.363 1.698 1.747 1.32 3.984
traffic_weekly 1.5 1.494 1.514 1.509 1.494 1.499 1.438 1.551 1.507 1.419 1.641 2.098 -
us_births 4.988 2.209 2.679 2.212 2.57 2.667 2.252 2.647 2.491 2.286 2.8 2.501 6.882
vehicle_trips 2.822 2.339 2.866 2.963 2.845 - 2.482 2.33 2.408 2.655 2.324 3.002 -
weather 0.873 0.88 0.978 0.899 0.947 3.342 0.95 0.873 0.869 0.959 0.951 0.901 -

*The results of the Informer model are only recorded for the datasets with equal-length series. For the datasets with unequal-length series, the Informer model is required to be executed per each series where the execution time is considerably high (for details, see here). Furthermore, the intermittent datasets such as Carparts, Rideshare, Web Traffic, Covid Deaths and Temperature Rain are not considered for the Informer experiments.

About Us


Team members

We are a group of time series researchers from Monash University and University of Sydney:

Contributors

The following people have contributed to our repository:

Contribute to Our Repository


We encourage other researchers to contribute time series datasets or benchmarking results to our repository either by directly uploading the datasets into our repository and/or by contacting us via email. You will then be listed as a contributor, and in the acknowledgements section.

If there are any copyright issues of the datasets, please contact us via email.

Acknowledgement


We are very grateful to the Department of Data Science and Artificial Intelligence of Monash University for their sponsorship.

Gareth Davies from Neural Aspect has contributed benchmark runs of many of the deep-learning methods, namely Autoformer, DLinear, NLinear, NBEATS, N-HITS, TiDE, PatchTST, and TimesFM.